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Abstract
The question arises as to whether oxidative stress has a primary role in neurodegeneration or is a secondary end-stage
epiphenomenon. The aim of the present study was to determine oxidative stress parameters like malondialdehyde (MDA),
carbonyl proteins (CP) and Albumin-disulphide (Alb-SSR) and relate these parameters to the immune parameter neopterin,
folic acid and vitamin B12 as vitamins and homocysteine in patients with neuro-degenerative diseases (NDD), namely mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) compared to an aged matched control group. MDA, CP and
Alb-SSR were significantly increased in the NDD group compared to controls, but not vitamin B12, folic acid and
neopterin. Significant correlations were found between CP and Alb-SSR, CP and MDA and between MDA and Alb-SSR
including patients with NDD and the control group. These results support the hypothesis that oxidative damage to lipids
and proteins is an important early event in the pathogenesis of neurodegenerative diseases.

Keywords: Neuro-degenerative diseases, mild cognitive impairment (MCI), Alzheimer’s disease (AD), reactive oxygen and

nitrogen species (RONS), malondialdehyde (MDA), carbonyl proteins (CP), sulphydryl-albumin (Alb-SH), albumin-

disulphide (Alb-SSR)

Introduction

Neurodegenerative diseases like Alzheimer’s disease

(AD) and mild cognitive impairment (MCI) are age-

associated neurodegenerative disorders resulting in

the loss of memory and cognition [1]. The aetiology

and pathogenesis of these diseases are still unclear.

There exist several aetiologic and pathogenetic hy-

potheses for the development of AD such as: genetic

defects in the APP gene on chromosome 21, latent

virus disorders, deficits in the energy metabolism

resulting in mitochondrial defects, deficits in neuro-

trophic factors and trace element neurotoxicity [2]. In

the last decades oxidative stress has become of

increased interest in neurologic disorders like AD or

other neuro-degenerative diseases [3,4]. On one

hand, oxidative stress in the brain is thought to be

central, by the mechanism of Ab (1�42)-associated

oxidation in neurons [5]. On the other hand, trace
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amounts of free metals, lipid peroxidation products

like malondialdehyde (MDA) and hydroxynonenal

(HNE) as well as lipid peroxidation end products like

carbonyl proteins (CP) and isoprostanes are in-

creased in AD, MCI and the neurodegenerative brain

[6�8]. Estimation of increased reactive carbonyls and

carbonyl proteins, especially in the brains of patients

with AD but also in other neurodegenerative diseases,

are demonstrated in numerous reports [3,4,9].

Recent studies demonstrated that oxidative da-

mage of proteins in MCI and AD subjects were

significantly higher than of age-matched control

subjects, suggesting that oxidation stress is an early

event in MCI and early AD [10,11]. Furthermore,

this situation is often combined with a reduction of

enzymatic, like glutathione peroxidise, glutathione

S-transferase and superoxide dismutase, non-enzy-

matic antioxidative defences [12] and on protein

synthesis and protein degradation [13,14]. New

approaches to investigate oxidative stress in MCI

and AD such as proteomics of CP, F2-IsoP levels

and damage of DNA and RNA showed that

oxidative damage is involved in a variety of cellular

targets which occur early in the progression of AD

[5,15�18]. Reactive aldehydes, like MDA and HNE,

but also CP seemed to be involved in the pathogen-

esis of neurodegenerative diseases in the brain and

also in the peripheral blood system [19�21]. Ques-

tions arise about the origin of free radicals or

reactive oxygen and nitrogen substances (RONS),

which are definitely connected with the pathogenesis

of this disease [22,23]. An end product of mem-

brane lipid peroxidation, MDA is one of the most

widely used markers for free radical mediated

damage [24]. It has been reported that MDA

increases in patients with neurodegenerative diseases

[8], but also in elderly healthy persons compared to

a young healthy control group [25,26]. Oxidized

forms of albumin are also becoming a more inter-

esting field in neurodegenerative disorders, espe-

cially acrolein-albumin [27]. Less is known about

the oxidation of cystein 34 of albumin to the

disulphide form albumin (Alb-SSR). Cys-34 of

albumin may contain a free sulphydryl group which

can easily be oxidized to a mixed disulphide (Alb-

SSR) or higher to sulphinic or sulphonic acid.

Oxidized albumin was reported to be a parameter

for ageing and different types of diseases like uremia

[28]. The thiol group of albumin is discussed to

contribute the anti-oxidative capacity in plasma.

The present study shows for the first time the

estimation of a set of oxidative stress blood para-

meters of patients with neurodegenerative diseases in

comparison to an age matched control group to gain

more insight into the ‘diverse and controversial role of

oxidants in neurodegeneration’ [29].

Materials and methods

Patients characteristics

The initial population of 31 subjects consisted of 15

healthy volunteers (11 females and four males; age:

60.8 years94.7) and 16 patients with neurodegen-

erative diseases (NDD): six females and four males

with AD, three females and three males with MCI;

average age: 67.6 years95.2). Mini-Mental State

Examination (MMSE) of NDD patients (MMSE:

23.592.2) was evaluated. AD patients fulfilled the

NINCDS ADRDA criteria [30], whereas MCI diag-

nosis followed the criteria of Petersen et al. [31] when

there was evidence of memory impairment, preserva-

tion of general cognitive and functional abilities and

absence of diagnosed dementia. NDD patients were

recruited from the Wagner-Jauregg-Hospital in Linz,

Austria. The patients did not receive vitamin supple-

mentation within their treatment regimen. Patients or

one of their relatives gave informed consent to

participate in this study, which was approved by the

local ethics committee. For the patients without

cognitive impairment, Mini-Mental State Examina-

tion was carried out (MMSE: 3090). Furthermore,

healthy volunteers did not receive any vitamin sup-

plements within 6 weeks before blood collection.

Subjects with additionally diseases like malignant

diseases or clinical relevant gastrointestinal, renal,

hepatic, cardiorespiratoric, hematological, as well as

patients with metabolic disorders or chronic infec-

tions were excluded from the study.

Determination of oxidative stress parameter

Blood samples were collected after an overnight fast,

allowed to clot and centrifuged immediately. Sera were

aliquoted and stored at �708C until measurement.

Total homocysteine concentrations were measured by

HPLC as described previously [32]. Determination

of neopterin concentrations was performed by ELISA

(BRAHMS Diagnostica, Berlin, Germany). For the

measurement of folate and vitamin B12 concentra-

tions a double-labelled radioimmunoassay (Chiron

Diagnostic Corp., Walpole, MA) was used.

Malondialdehyde was quantitated by a HPLC

method after reaction with thiobarbituric acid as

described elsewhere [33].

The redox state of human serum albumin was

followed by HPLC separation of albumin giving a

peak representing the sulphydryl form (Alb-SH) and

another representing the mixed disulphide form (Alb-

SSR), according to Hayashi et al. [34]. Separation

was carried out using a Shodex Asahipak ES-502N

7C anion exchange column (7.6�100 mm) with

50 mm Na-acetate, 400 mm Na-sulphate, pH 4.85 as

mobile phase. Elution was carried out with a gradient

of 0�6% ethanol and a flow rate of 1 mL/min. The

column was kept at 358C. Fluorescence detection was
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carried out at 280/340 nm. Samples were diluted

1:100 with 0.1 M Na-phosphate, 0.3 m NaCl, pH

6.87, filtered through a 0.45 mm nylon filter and

20 mL were injected into the HPLC system. Data are

expressed as the percentage of Alb-SSR.

For the determination of carbonyl proteins, oxi-

dized bovine serum albumin (BSA) was prepared for

standardization as described elsewhere [35]. Serum

samples and standards were diluted to give a final

protein concentration of 4 mg/mL. Measurement of

CP was performed after derivatization with 2,4-

dinitrophenyl-hydrazine (DNPH) by a chemilumi-

nescence technique on a chemiluminescence reader

(Lumistar,BMG, Germany) after addition of 200 mL/

well Super Signal Maximum Sensitivity substrate

(Pierce, Rockford, USA). Serum protein was mea-

sured with the bicinchoninic assay (BCA; Pierce,

Rockford, USA).

Statistical analysis

Statistical analysis was performed by SPSS software

14.0. Data are presented as means9standard devia-

tion (SD). Significance was set at pB0.05. Mean

values of NDD and control group were compared

using t-test for unpaired samples. Further, we pooled

data for gender and age and compared concentrations

of all parameters by one-way-ANOVA. Pearson’s

correlation coefficient and regression analysis were

used to evaluate bivariate relationships of gender or

age with all biochemical markers of NDD patients as

well as healthy volunteers.

Results

Figure 1A shows the significant difference (pB

1.0�10�3) in the content of MDA between the

control group (n�15; 1.1590.32 mm) and the

NDD group (n�16; 2.6291.27 mm). Concentration

of CP of the control group (n�15; 0.3090.12 nmol/

mg protein) were significantly lower (pB4.9�10�6)

than in the NDD group (n�16; 0.9090.29 nmol/

mg protein), as shown in Figure 1B. The fraction of

Albumin-SSR was significantly increased (p�1.7�
10�7) in the NDD group (n�16; 49.299.2%)

compared to the control group (n�15; 24.79

4.0%), as shown in Figure 1C. Comparing the

amount of neopterin, folic acid, vitamin B12 and

age, no significant differences were found between

the control and the NDD group, as described in

Table I.

Figure 2A�C show the Pearson correlations be-

tween the different oxidative stress markers including

data of patients and controls. The best correlation

was found between CP and Albumin-SSR (n�31;

r�0.906; p�4�10�10; Figure 2A), then between CP

and MDA (n�31; r�0.85; p�3.8�10�8; Figure 2B)

and least between MDA and Albumin-SSR (n�31;

r�0.786; pB1.9�10�6; Figure 2C).

When correlating CP with Alb-SSR, within the

control group alone no significant correlation was

found (n�15; r�0.037; p�0.895). However, a

significant correlation was found within the patient

group (n�16; r�0.736; p�2.3�10�6). This situa-

tion was similar for the correlation of CP and MDA:

while we found no significance in the controls (n�
15; r�0.3; p�0.3), there was a good correlation in

the NDD group with high significance (n�16; r�
0.83; pB0.001). The correlation between MDA vs

Albumin-SSR in the control group showed a trend

toward significance (n�15; r�0.489; p�0.064),

while a significant correlation was found in the

NDD group (n�16; r�0.723; pB0.01).
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Figure 1. Oxidative stress parameters in serum from a control and a NDD group. MDA content (A), CP content (B) and the amount of

Albumin-SSR (C) in serum were determined. Bars indicated with * are significantly different from the control value (pB0.05).
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Comparison of age (B63.0 years and ]63.0 years)

and gender with CP, Alb-SSR and MDA showed no

significant differences in any parameter (p�0.1).

Neither age nor gender affected the statistical rela-

tionship between CP, Alb-SSR and MDA.

Discussion

The usage of peripheral markers to show oxidative

stress in neurodegenerative diseases was not convin-

cing. This is mostly attributed to the main opinion

that the blood�brain-barrier is intact in neurodegen-

erative disorders and therefore oxidative stress mar-

kers are not present in the peripheral circulation.

However, there is growing evidence that abnormal

small-vessel structures could affect the blood�brain-

barrier in AD.

Lipid peroxidation is a central feature of oxidative

stress and can be assessed by a number of methods

including the quantification of peroxidation end

products like MDA. MDA was shown to be increased

with age in human brain, but several studies failed to

detect any increase in serum in AD or other

neurodegenerative diseases [36,37]. We have found

that MDA levels are higher in the NDD group

compared to controls. McGrath et al. [52] reported

an increase of 4-hydroxynonenal but not of MDA in

patients with AD. This disagreement could be

ascribed to the commonly used spectrophotometric

assay of MDA, while we used the more specific

HPLC technique.

Lipid peroxidation end products play an important

role in the modification of proteins beside a direct

attack of RONS. The determination of CP is a widely

used marker for oxidative stress for the investigation

of samples from patients with neurodegenerative

diseases [3,9,38]. An increase of CP in hippocampus

and inferior parietal lobule regions of AD patients

compared to age-matched controls was found by

Hensley et al. [39]. In blood samples no difference

was found concerning the amount of CP between AD

patients and control subjects [40]. Our data demon-

strate a severe increase in the generation of carbonyl

proteins in the NDD group compared to the control

group which is in good agreement with a recently

published study [41]. Both markers MDA and

carbonyl proteins correlated well in the NDD group

[8,42].

We report for the first time an increase of Alb-SSR

in neurodegenerative patients compared to an

age-matched control group. As albumin is quickly

distributed between blood and the extravascular

compartment it serves as a global marker for the

redox state in the body. The disulphide fraction of

albumin is increased during ageing and in different

kinds of diseases like senile cataract, diabetes mellitus

or in hemodialysis patients [34,43�45]. Therefore,

Alb-SSR is not a specific marker for neurodegenera-

tive disease. In addition, the age of patients as well as

controls has to be taken into account. Peroxynitrite

and hydrogen peroxide are well known RONS which

oxidize Alb-SH to Alb-SSR [29]. As peroxynitrite is

initiating both lipid peroxidation and oxidation of
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Figure 2. Correlation of oxidative stress parameters of serum from control (2) and NDD group ('). Albumin-SSR vs CP (A), MDA vs

CP (B) and MDA vs Albumin-SSR (C) were analysed by linear regression.

Table I. Clinical parameters in patients with neurodegenerative

diseases (NDD: includes MCI and AD group) and the control

group.

Control (n�15) NDD (n�16)

Age 60.894.7 67.695.2

Neopterin (nm) 6.891.5 7.693.8

Folic acid (mg/L) 8.294.2 8.994.6

Vitamin B12 (ng/L) 541.89418.2 465.49204.6

Homocysteine (mm) 13.993.3 14.196.8
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proteins directly an increased peroxynitrite formation

in neurodegenerative disease patients could explain

the increased levels of MDA, CP and Alb-SSR [23].

Elevated plasma total homocysteine concentration

is discussed as a risk factor for cognitive decline or

AD [46]. Mild elevations of plasma total homocys-

teine are associated with increased AD independent

of folate and vitamin B12 [47]. These findings differ

from ours, where the content of plasma homocysteine

in NDD was essentially equal to the age-matched

control group. Our results are in good agreement with

the Rotterdam and MacArthur studies showing

homocysteine not as a risk factor for cognitive

impairment of elderly subjects [48,49]. Finally,

Ravaglia et al. [50] found an even negative association

between homocysteine concentration and cognitive

impairment. Formation of Alb-SSR may therefore

not be attributed to an increased homocysteine.

High homocysteine plasma levels in MCI and AD

have been associated with vitamin deficiency, espe-

cially folate and vitamin B12. We found no associa-

tion of folate with cognitive function or vitamin B12.

Furthermore, folate and vitamin B12 levels of

patients with AD were within the normal range

[51]. It is expected that folate is associated with

vitamin B12 by the folate dependent methylation

pathway. We found no difference in plasma levels

between NDD patients and the control group for

neither folate nor vitamin B12, which is in agreement

with a recently published study [48].

We examined the immune status of the NDD and

the control group by estimating neopterin. No

difference in the amount of neopterin between

NDD and the control group was found, suggesting

that cellular immune defence is not activated during

the pathogenesis of NDD.

It is well known that CP, Alb-SSR and MDA are

sensible markers for age. Bivariate regression analysis

showed no significant effect of age or gender on

oxidative stress markers used in this study.

Summarizing all data from our study, we suggest

that in patients with NDD oxidative stress parameters

(namely MDA, carbonyl proteins and Albumin-SSR)

although not specific are more useful markers for

neurodegenerative disorders than plasma homocys-

teine, vitamin B12 or folate.
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